3-FOLDS IN \mathbb{P}^{5} OF DEGREE 12

GERHARD EDELMANN

Abstract

Let \hat{X} be a 3 -dimensional submanifold of \mathbb{P}^{5} of degree 12 . This article gives, up to one case, a complete classification of the deformation classes of those 3 -folds. The main tools used are methods already applied in the classification of degrees 9 to 11 and adjunction theoretic results. We show here how the $2^{\text {nd }}$ reduction of \hat{X} can be applied to analyze the birational structure of \hat{X} or even exclude the existence of \hat{X}.

Introduction

Submanifolds of \mathbb{P}^{5} of codimension 2 are 3 -folds of special interest because there exist non-complete intersection examples, even examples of Kodaira-dimension ∞. This is interesting in view of the Hartshorne-conjecture which says that submanifolds of \mathbb{P}^{N} with dimension bigger than $\frac{2}{3} N$ should be complete intersections. Finding examples of 3 -folds in \mathbb{P}^{5} with Kodaira-dimension smaller than 3 is also attractive because we know that the degree of those 3 -folds is bounded [BOSS 1].
A 3 -dimensional manifold can be embedded in general only into \mathbb{P}^{7}, whence 3 folds in \mathbb{P}^{5} have to fulfil a lot of further restrictive conditions. This allowed a complete classification up to degree 8 [O1],[O2],[11],[[2], [13], continued by Beltrametti, Schneider and Sommese [BSS 1],[BSS 2] for degrees 9 to 11. This article, which is a summary of the author's dissertation, gives a brief outline of the degree- 12 case. A complete classification is given up to one set of invariants for which neither an example can be given nor can the non-existence be shown.

The main tool for the classification in degree 12 are methods already used by [BSS 1] and [BSS 2] in degrees 9 to 11 and a systematic study of the $2^{\text {nd }}$ reduction. Finding relations between the invariants of a 3 -fold $\hat{X} \subset \mathbb{P}^{5}$ and those of its $2^{\text {nd }}$ reduction (X, \mathcal{K}) plays a very important role. The necessary computations are done in detail in [E] and [BSS 3]. In fact, I was informed by Sommese about the existence of certain formulae relating the invariants of \hat{X} and X the proof of which I worked out independently.

As to finding examples of 3 -folds in \mathbb{P}^{5} of degree 12 one can use the well-known liaison-techniques. Yet 2 examples have to be constructed in a different way. In one example described here in a way originating to Schreyer we use the computer algebra program Macaulay to show the smoothness.
The content of this article is the following
Theorem 1. Each 3-fold in \mathbb{P}^{5} of degree 12 belongs to one of the following deformation classes. (Refer to paragraph 1 for a definition of the invariants.)

case	\hat{d}_{0}	\hat{d}_{1}	\hat{d}_{2}	\hat{d}_{3}	$g(\hat{X})$	$\chi\left(\mathcal{O}_{\hat{X}}\right) \chi\left(\mathcal{O}_{\hat{S}}\right)$	$e(\hat{X})$	$\kappa(\hat{X})$	d_{0}	d_{1}	type
1	12	16	8	0	15	2	6	48	$-\infty$	-	-
conic-bundle											
2	12	16	14	6	15	1	7	-12	$-\infty$	63	31
3	12	18	21	21	16	0	9	-102	0	21	21
log-general											
4	12	20	28	96	17	-1	11	-192	1	12	20
log-general											
5	12	22	35	51	18	-2	13	-282	2	12	22
log-general											
6	12	24	48	96	19	-5	16	-456	3	12	24
compl. inters.											
7	12	36	108	324	25	-19	31	-1296	3	12	36
compl. inters.											
8	12	22	23	15	18	1	11	-198	$-\infty$	53	35
$?$											

For the cases 1 to 7 we know examples, whereas we cannot decide whether a 3 -fold in \mathbb{P}^{5} with the invariants of case 8 exists.
Uniqueness is known in case 1 [BOSS 2] and for the complete intersections of the cases 6 and 7 respectively. In case 2 we can show that the $2^{\text {nd }}$ reduction has to be a \mathbb{P}^{1}-bundle over \mathbb{P}^{2}. In case 3 the $2^{\text {nd }}$ reduction is also uniquely determined. Note that for the cases 4 to 7 the $2^{\text {nd }}$ reduction is isomorphic to \hat{X} and that in case 1 there does not exist a $2^{\text {nd }}$ reduction.

The resolutions of the ideal-sheafs $\mathcal{J}_{X / \mathbf{P}^{\mathbf{x}}}$ of the 3 -folds in \mathbb{P}^{5} of degree 12 are the following ones:

case	resolution of $\mathcal{J}_{\chi / \text { /p }}$
1	
2	$0 \longrightarrow 2 \Omega_{\mathbf{P}^{6}}^{2}(-3) \longrightarrow 3 \Omega_{\mathbf{P}^{6}}^{1}(-4) \oplus 6 \mathcal{O}_{\mathbf{P}^{\text {d }}}(-5) \longrightarrow \mathcal{J}_{\mathbb{X} / \mathbf{p}^{\mathbf{t}}} \longrightarrow 0$
3	
4	$0 \longrightarrow 2 \mathcal{O}_{\mathrm{P}^{6}}(-6) \longrightarrow 3 \mathcal{O}^{\text {¢ }}$ (-4$) \longrightarrow \mathcal{J}_{\chi / / \mathrm{p}^{\text {d }}} \longrightarrow 0$
5	
6	$0 \longrightarrow \mathcal{O}_{\mathbf{P}^{\text {t }}}(-7) \longrightarrow \mathcal{O}_{\mathbf{P}^{\text {b }}}(-4) \oplus \mathcal{O}_{\mathbf{P}^{\text {t }}}(-3) \longrightarrow \mathcal{J}_{\mathbb{X} / \mathrm{P}^{\text {b }}} \longrightarrow 0$
7	$0 \longrightarrow \mathcal{O}_{\mathbf{P}^{\text {b }}}(-8) \longrightarrow \mathcal{O}_{\mathbf{P}^{\delta}}(-6) \oplus \mathcal{O}_{\mathbf{P}^{6}}(-2) \longrightarrow \mathcal{J}_{\mathcal{X} / \mathrm{P}^{\text {d }}} \longrightarrow 0$

I would like to thank the Deutsche Forschungsgemeinschaft (DFG) for financial support. I am also grateful to professor Michael Schneider for inspiring this work and giving me lots of useful hints, furthermore to professor Frank-Olaf Schreyer and professor Andrew-John Sommese for their valuable support.

1. Notations and Preliminaries

We work over the complex field \mathbb{C}. All varieties are projective. By "3-fold" we always mean a 3 -dimensional complex compact manifold, "surface" denotes a 2 -dimensional compact complex variety, "curve" a 1-dimensional compact complex variety.

The greater part of our notations is standard in algebraic geometry. (cf. e.g. [BSS 1], [BSS 2]) Notations with hat ^ are principally reserved for a 3 -fold \hat{X} embedded into \mathbb{P}^{5} by $\hat{L}:=\mathcal{O}_{P^{s}}(1) \mid \hat{X}$. By \hat{S} we always mean a generic hyperplane section of \hat{X}, which is a smooth surface in \mathbb{P}^{4}, and \hat{C} denotes a generic hyperplane section of \hat{S}. So \hat{C} is a smooth curve in \mathbb{P}^{3}. Furthermore we denote by $g(\hat{X})$ the sectional genus of \hat{X}, by $\chi\left(\mathcal{O}_{\hat{X}}\right)$, respectively $\chi\left(\mathcal{O}_{\dot{S}}\right)$ the Euler characteristic of \hat{X}, respectively of \hat{S} and by $e(\hat{X})$ the topological Euler characteristic. The Kodairadimension is as usual denoted by κ.

For a polarized pair $\left(V, L_{V}\right)$, where V is an n-dimensional manifold and L_{V} an ample line bundle on V there exists a $1^{\text {st }}$ reduction ($V^{\prime}, L_{V^{\prime}}$), if $K_{V}+(n-1) L_{V}$ is nef and big. Note that for a 3 -fold $\hat{X} \subset \mathbb{P}^{5}$ of degree $\hat{d} \neq 7$ one always has $(\hat{X}, \hat{L}) \simeq\left(X^{\prime}, L_{X^{\prime}}\right)$ as polarized pairs whenever a $1^{\text {st }}$ reduction $\left(X^{\prime}, L_{X^{\prime}}\right)$ exists and that for $\hat{d} \geq 12$ the line bundle $K_{\hat{X}}+\hat{L}$ is always nef and big with one single well-known exception mentionned in 2.6. If $K_{\hat{X}}+\hat{L}$ is nef and big, \hat{X} is said to be of \log - general type. For \hat{X} of \log-general type the $1^{s t}$ reduction is always isomorphic to \hat{X} and there always exists a $2^{\text {nd }}$ reduction (X, \mathcal{K}) together with a birational morphism $\varphi: \hat{X} \longrightarrow X$, the so-called $2^{\text {nd }}$ reduction map. Note that \mathcal{K} is an ample line bundle on X with $\varphi^{*} \mathcal{K}=K_{\hat{X}}+\hat{L}$ and $\mathcal{K}=K_{X}+L_{X}$ with $L_{X}:=\varphi_{*}(\hat{L})^{\vee V}$. The $2^{\text {nd }}$ reduction map will be examined more closely lateron. Further information about the $1^{\text {tt }}$ and the $2^{\text {nd }}$ reduction can also be obtained from [BFS].

On \hat{X} respectively on X we define the pluridegrees by

$$
\begin{array}{lr}
\hat{d}_{i}:=\left(K_{X}+\hat{L}\right)^{i} \hat{L}^{3-i} & i=0, \ldots, 3 \\
d_{i}:=\left(K_{X}+L_{X}\right)^{i} L_{X}^{3-i} & i=0, \ldots, 3
\end{array}
$$

respectively.

A 3 -fold of log-general type satisfies a lot of numerical restrictions so that for a fixed degree \hat{d} one gets a finite number of sets of possible invariants. Putting together all those restrictions which are already known from [BSS 1], [BSS 2] and [BBS] a simple C-programme yields the following list of possible sets of invariants of \log-general type 3 -folds in \mathbb{P}^{5} of degree 12. For further details see [E, chap. 1].

[^0]| case | \hat{d}_{0} | \hat{d}_{1} | \hat{d}_{2} | \hat{d}_{3} | $g(\hat{X})$ | $\chi\left(\mathcal{O}_{\hat{X}}\right)$ | $\chi\left(\mathcal{O}_{\hat{S}}\right)$ | $e(\hat{X})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 12 | 12 | 12 | 12 | 13 | 0 | 5 | 24 |
| 2 | 12 | 16 | 14 | 6 | 15 | 1 | 7 | -12 |
| 3 | 12 | 16 | 20 | 12 | 15 | 0 | 8 | -72 |
| 4 | 12 | 18 | 21 | 21 | 16 | 0 | 9 | -102 |
| 5 | 12 | 18 | 27 | 27 | 16 | -1 | 10 | -162 |
| 6 | 12 | 20 | 22 | 6 | 17 | 1 | 10 | -108 |
| 7 | 12 | 20 | 28 | 12 | 17 | 0 | 11 | -168 |
| 8 | 12 | 20 | 28 | 36 | 17 | -1 | 11 | -192 |
| 9 | 12 | 22 | 17 | 9 | 18 | 2 | 10 | -78 |
| 10 | 12 | 22 | 29 | 15 | 18 | 1 | 11 | -198 |
| 11 | 12 | 22 | 29 | 21 | 18 | 0 | 12 | -198 |
| 12 | 12 | 22 | 35 | 27 | 18 | -1 | 13 | -258 |
| 13 | 12 | 22 | 35 | 51 | 18 | -2 | 13 | -282 |
| 14 | 12 | 24 | 48 | 96 | 19 | -5 | 16 | -456 |
| 15 | 12 | 36 | 108 | 324 | 25 | -19 | 31 | -1296 |

Note that this procedure can be applied in any degree. The length of the list, however, is rapidly increasing with growing degree.

2. Examples of 3-folds in \mathbb{P}^{5} of Degree 12

There are 2 complete intersection 3 -folds in \mathbb{P}^{5} of degree 12 :
Example 2.1. The complete intersection of type $(2,6)$ with the invariants $\hat{d}_{0}=12$, $\hat{d}_{1}=36, \hat{d}_{2}=108, \hat{d}_{3}=324, g(\hat{X})=25, \chi\left(\mathcal{O}_{\hat{X}}\right)=-19, \chi\left(\mathcal{O}_{s}\right)=31, e(\hat{X})=$ -1296 is the uniquely determined example with maximal sectional genus.

Example 2.2. The complete intersection of type $(3,4)$ is the uniquely determined example with submaximal sectional genus. The invariants are $\hat{d}_{0}=12, \hat{d}_{1}=24$, $\hat{d}_{2}=48, \hat{d}_{3}=96, g(\hat{X})=19, \chi\left(\mathcal{O}_{\hat{X}}\right)=-5, \chi\left(\mathcal{O}_{\xi}\right)=16, e(\hat{X})=-456$.

Two further examples can be obtained by liaison-techniques [PS, Prop. 4.1] [O3, 3. Theorem 6] from 3 -folds in \mathbb{P}^{5} with degrees smaller than 12 as explained in [E, chap. 2]. By this method one also gets an explicit resolution of the idealsheaf. Thus for examples obtained by liaison generally all invariants are known. We have

Example 2.3. Linkage $V \quad 3,5 \quad \hat{X}$ where V denotes the Segre-embedded 3-fold in \mathbb{P}^{5} of degree Ω with resolution

$$
0 \longrightarrow 2 \mathcal{O}_{\mathbf{P}^{6}}(-3) \longrightarrow 3 \mathcal{O}_{\mathbf{P}^{6}}(-2) \longrightarrow \mathcal{J}_{V} \longrightarrow 0
$$

gives a 3-fold $\hat{X} \subset \mathbb{P}^{5}$ with resolution

$$
0 \longrightarrow 3 \mathcal{O}_{\mathbf{P} \delta}(-6) \longrightarrow 3 \mathcal{O}_{\mathbf{P} \delta}(-5) \oplus \mathcal{O}_{\mathbf{P} \delta}(-3) \longrightarrow \mathcal{J}_{\hat{X}} \longrightarrow 0
$$

This example has invariants $\hat{d}_{0}=12, \hat{d}_{1}=22, \hat{d}_{2}=35, \hat{d}_{3}=51, g(\hat{X})=18$, $\chi\left(\mathcal{O}_{\hat{X}}\right)=-2, \chi\left(\mathcal{O}_{\xi}\right)=13, e(\hat{X})=-282$. Looking at the resolution of $K_{\hat{X}}$ one can show that $\kappa(\hat{X})=2$.

Example 2.4. Let V denote the 3 -fold in \mathbb{P}^{5} of degree 8 with resolution

$$
0 \longrightarrow 2 \mathcal{O}_{\mathbb{P}^{6}}(-5) \longrightarrow \mathcal{O}_{\mathbf{P}^{s}}(-4) \oplus 2 \mathcal{O}_{\mathbf{P}^{6}}(-3) \longrightarrow \mathcal{J}_{V} \longrightarrow 0
$$

Now linkage V 4.5 \hat{X} yields a 3-fold $\hat{X} \subset \mathbb{P}^{5}$ with resolution

$$
0 \longrightarrow 2 \mathcal{O}_{\mathbf{P}^{b}}(-6) \longrightarrow 3 \mathcal{O}_{\mathbf{P}^{b}}(-4) \longrightarrow \mathcal{J}_{\mathbb{X}} \longrightarrow 0
$$

and the invariants $\hat{d}_{0}=12, \hat{d}_{1}=20, \hat{d}_{2}=28, \hat{d}_{3}=36, g(\hat{X})=17, \chi\left(\mathcal{O}_{\mathscr{R}}\right)=-1$, $\chi\left(\mathcal{O}_{s}\right)=11, e(\hat{X})=-192$. The Kodaira-dimension can be shown to be 1 .

Example 2.5. Chang [Ch, p. 107] has already shown that there exists a Buchsbaum s-fold in \mathbb{P}^{5} of degree 12 with resolution

$$
0 \longrightarrow 3 \mathcal{O}_{\mathrm{P} \delta}(-5) \oplus \mathcal{O}_{\mathrm{P}^{s}}(-6) \longrightarrow \Omega_{\mathrm{P}^{\phi}}^{1}(-3) \longrightarrow \mathcal{J}_{\mathbb{X}} \longrightarrow 0
$$

and invariants $\hat{d}_{0}=12, \hat{d}_{1}=18, \hat{d}_{2}=21, \hat{d}_{3}=21, g(\hat{X})=16, \chi\left(\mathcal{O}_{\mathcal{X}}\right)=0$, $\chi\left(\mathcal{O}_{\hat{S}}\right)=11, e(\hat{X})=-102$.

Example 2.6. In [BOSS 2] a further 3-fold in \mathbb{P}^{5} of degree 12 is described. Its resolution is

$$
0 \longrightarrow 4 \mathcal{O}_{\mathbb{P}^{s}}(-5) \oplus \Omega_{\mathrm{P}^{6}}^{4} \longrightarrow \Omega_{\mathrm{P}^{(}}^{2}(-2) \longrightarrow \mathcal{J}_{\mathbb{R}} \longrightarrow 0
$$

and it has the invariants $\hat{d}_{0}=12, \hat{d}_{1}=16, \hat{d}_{2}=8, \hat{d}_{3}=0, g(\hat{X})=15, \chi\left(\mathcal{O}_{\hat{X}}\right)=2$, $\chi\left(\mathcal{O}_{\hat{S}}\right)=6, e(\hat{X})=48$. It is the uniquely determined Ω-fold in \mathbb{P}^{5} with these invariants. We also know that it is a conic-bundle over a K3-surface and it is the only 3-fold in \mathbb{P}^{5} of degree 12 that is not of log-general type.

Now we are going to show that there is a further 3 -fold in \mathbb{P}^{5} of degree 12. This 3 -fold was constructed with the help of Schreyer and Popescu using Macaulay to show the smoothness.

Proposition 2.7. There exists a log-general type 3-fold $\hat{X} \subset \mathbb{P}^{5}$ with $\kappa(\hat{X})=-\infty$ and invariants $\hat{d}_{0}=12, \hat{d}_{1}=16, \hat{d}_{2}=14, \hat{d}_{3}=6, g(\hat{X})=15, \chi\left(\mathcal{O}_{\hat{X}}\right)=1$, $\chi\left(\mathcal{O}_{\hat{S}}\right)=7, e(\hat{X})=-12$ which is the blowing-up of the Bordiga 3-fold along a smooth curve of degree 15 and genus 10. For every 3-fold in \mathbb{P}^{5} with these invariants the $2^{\text {nd }}$ reduction has to be a \mathbb{P}^{1}-bundle over \mathbb{P}^{2}.
Proof. We construct $\hat{X} \subset \mathbb{P}^{5}$ as determinantal locus of a vector bundle homomorphism $\psi: \mathcal{F} \rightarrow \mathcal{G}$, i.e.

$$
\hat{X}=\left\{p \in \mathbb{P}^{5}: r k \psi(p)<r k(\mathcal{G})\right\} .
$$

We will see below how \mathcal{F} and \mathcal{G} can be chosen. This construction is carried out explicitely with Macaulay the complete Macaulay programme and results being described in [E, sec. 2.3 and appendix B]. Note that Macaulay-computations can only be done over a ring with positive characteristic p with $0<p \leq 31991$. For general reasons it is enough to do the computations for p maximal in order to obtain the same results (esp. concerning the smoothness) for the case that the field is \mathbb{C}. Let $S:=\mathbb{Z}\left[x_{0}, \ldots, x_{5}\right]$ and choose a generic S-module-homomorphism $9 S(1) \xrightarrow{m} 2 S(2)$ which may be considered to be given by a matrix

$$
m=\left(\begin{array}{ccccccccc}
x_{0} & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & 0 & 0 & 0 \\
0 & 0 & 0 & x_{0} & x_{1} & x_{2} & x_{3} & x_{4} & x_{5}
\end{array}\right) .
$$

We are going to construct m as a representation of the finite cohomology module $M:=\oplus_{n \in \mathbf{Z}} H^{1}\left(\mathcal{J}_{\mathscr{X}}(n)\right)$. A free resolution of M is the exact sequence

$$
\begin{aligned}
& 0 \rightarrow 3 S(-5) \rightarrow 16 S(-4) \rightarrow 33 S(-3) \rightarrow 5 S(-1) \rightarrow \\
& \oplus 12 S \stackrel{f m \cdot 2}{\rightarrow} 9 S(1) \xrightarrow[m]{m} 2 S(2) \rightarrow M \rightarrow 0 \\
& 30 S(-2) \\
& \hline
\end{aligned}
$$

Choose a linear morphism $6 S \xrightarrow[\rightarrow]{c} 9 S(1)$ by multiplying the 9×12 submatrix of $f m .2$ with a random 12×6 matrix with entries in \mathbb{Z}. In the free resolution of the transposed morphism $9 S(-1) \xrightarrow{t c} 6 S$ we look at the restriction $S(-5) \xrightarrow{b} 9 S(-1)$. Now the transposed morphism $9 S(1) \xrightarrow{\text { th }} S(5)$ together with $i:=t b \circ f m .2$ gives rise to the exact sequence

The sheafified version
is a resolution of a 2 -codimensional subvariety of \mathbb{P}^{5} of degree 12 and genus 15. From a free minimal resolution of (*) we can compute all the invariants of \hat{X}. So there only remains to be shown the smoothness of \hat{X}. This is carried out by Macaulay. One can see that the first 6 entries of the matrix i (i is a 1×12 matrix) describe a scroll. In order to show the smoothness of \hat{X} we look at the Jacobi-matrix of i and take some 2×2-minors in the block of the sextics and the quintics. The ideal of these 2×2-minors together with the equations of the scroll contains $\operatorname{sing}(\hat{X})$. It is enough to choose randomly 3 minors in the quintics and in the sextics to show that $\operatorname{sing}(\hat{X})=0$.
So we have constructed a 3 -fold in \mathbb{P}^{5} with the desired invariants. The birational structure given by the $2^{\text {nd }}$ reduction map can also be examined with Macaulay wherefrom the claimed structure is deduced [E, sec. 2.3]. Note that the $2^{\text {nd }}$ reduction (X, \mathcal{K}) is the well-known Bordiga 3 -fold embedded by $|\mathcal{K}|$ into \mathbb{P}^{5}. This implies especially that $\kappa(\hat{X})=-\infty$.

Remark 2.8. The 3-fold described in 2.7 can also be constructed in a slightly different way if one starts with the cohomology table. This has the advantage that one gets a better manageable resolution of $\mathcal{J}_{\mathbb{X}}$, namely

$$
0 \longrightarrow 2 \Omega_{\mathrm{P}^{\mathbf{d}}}^{2}(-3) \longrightarrow 3 \Omega_{\mathrm{P}^{\mathbf{s}}}^{1}(-4) \oplus 6 \mathcal{O}_{\mathrm{P}^{\mathrm{b}}}(-5) \longrightarrow \mathcal{J}_{\boldsymbol{X} / \mathrm{p}^{6}} \longrightarrow 0 .
$$

Again, for the smoothness of \hat{X} we need a Macaulay computation.

3. The $2^{\text {nd }}$ reduction (X, \mathcal{K})

Analyzing the $2^{\text {nd }}$ reduction map $\varphi: \hat{X} \longrightarrow X$ for a 3 -fold $\hat{X} \subset \mathbb{P}^{5}$ of loggeneral type can in certain cases show the non-existence of \hat{X} or, at least, one obtains some birational information about \hat{X}. The structure of φ for general 3folds (without the embedding condition into \mathbb{P}^{5}) has been known explicitely [BFS, 0.2.1] where a list of all possible contractions of divisors to points or curves is given. Divisorial contractions, however, may cause singularities in X which make it difficult to define and compute invariants of X. Fortunately, making systematically use of the embedding-condition of \hat{X} into \mathbb{P}^{5}, most of those divisorial contractions can be excluded. The computations which are rather complicated can be found in $[E$, chap. 3] and also in [BSS 3]. The result is the following

Theorem 3.1. Let \hat{X} be a 9-fold in \mathbb{P}^{5} of log-general type and $\varphi: \hat{X} \longrightarrow X$ the $2^{\text {nd }}$ reduction map. If $\hat{d} \neq 10,13$ the map φ can only blow down disjoint ruled surfaces $D_{i} \subset \hat{X}$ to smooth curves $C_{i} \subset X$ where C_{i} is isomorphic to the base curve of D_{i}. In case $\hat{d}=13$ there may occur in addition contractions of disjoint divisors $D \simeq \mathbb{P}^{2}$ with normal bundle $\mathcal{N}_{D / X}=\mathcal{O}_{\mathrm{p}}(-2)$ to points.

Corollary 3.2. If in $3.1 \hat{d} \neq 10,13$ the $2^{\text {nd }}$ reduction is smooth.
Next we prove some formulae relating the invariants \hat{d}_{i} of \hat{X} with the invariants d_{i} of X. For the rest of this article we always restrict our considerations to the case $\hat{d} \neq 10,13$.

Lemma 3.3. Let $\varphi: \hat{X} \longrightarrow X$ be the $2^{\text {nd }}$ reduction map and $D \subset \hat{X}$ a ruled surface blown down by φ to a curve $C \subset X$. Furthermore let ℓ denote a fibre of the ruled surface D and $\mathcal{L}, \mathcal{L}^{\prime}$ line bundles in $\operatorname{PIC}(X)$. Then we have:
i) $\left(\varphi^{*} \mathcal{L} . \ell\right)=0$ and $D \ell=-1$,
ii) $\left(\varphi^{*} \mathcal{L}\right)\left(\varphi^{*} \mathcal{L}^{\prime}\right) D=0$, especially $\left(\varphi^{*} \mathcal{L}\right)^{2} D=0$,
iii) $\left(\varphi^{*} \mathcal{L}\right) D^{2}=-\mathcal{L} C$,
iv) $D^{3}=-c_{1}\left(\mathcal{N}_{C / X}\right)$,
v) $K_{X} C=-c_{1}\left(\mathcal{N}_{C / X}\right)-2+2 g(C)$
vi) $\left(\varphi^{*} \mathcal{L}\right) D=(\mathcal{L} C) \ell$ in $H^{4}(\hat{X}, \mathbb{Z})$.

Proof. These are well-known expressions. See e.g. [M, p. 75].
Proposition 3.4. Let $\varphi: \hat{X} \longrightarrow X$ be the $2^{\text {nd }}$ reduction map contracting the disjoint ruled surfaces $D_{a}:=\cup D_{i}$ to curves $C_{a}:=\cup C_{i}$. Then we have
i) $d_{3}=\hat{d}_{3}$,
ii) $d_{2}=\hat{d}_{2}$,
iii) $d_{1}=\hat{d}_{1}+\mathcal{K} C_{a}$, especially $d_{1} \geq \hat{d}_{1}$,
iv) $\hat{d}_{0}+\hat{d}_{1}=d_{0}+d_{1}-2 \sum_{i}\left(\hat{L}^{2} D_{i}+g\left(C_{i}\right)-1\right)$.

Proof.
i) $\hat{d}_{3}=\left(K_{\hat{X}}+\hat{L}\right)^{3}=\left(\varphi^{*} \mathcal{K}\right)^{3}=\mathcal{K}^{3}=\left(K_{X}+L_{X}\right)^{3}=d_{3}$.
ii) From [BFS, p. 38] we know a formula for $K_{\hat{X}}$ which under our additional assumptions simplifies to

$$
K_{\hat{X}}=\varphi^{*} K_{X}+D_{a}
$$

Now with 3.3 we have

$$
\begin{aligned}
d_{2} & =\mathcal{K}^{2} L_{X}=\left(\varphi^{*} \mathcal{K}\right)^{2} \varphi^{*} L_{X} \\
& =\left(\varphi^{*} \mathcal{K}\right)^{2}\left(\varphi^{*} \mathcal{K}-\varphi^{*} K_{X}\right) \\
& =\left(\varphi^{*} \mathcal{K}\right)^{2} \varphi^{*} \mathcal{K}-\left(\varphi^{*} \mathcal{K}\right)^{2}\left(K_{X}-D_{a}\right) \\
& =\left(K_{X}+\hat{L}\right)^{2} \hat{L}+\left(K_{\hat{X}}+\hat{L}\right)^{2} K_{\hat{X}}-\left(\varphi^{*} \mathcal{K}\right)^{2} K_{\hat{X}} \\
& =\hat{d}_{2}
\end{aligned}
$$

iii) Is proved in a similar way as $i i$).
$i v)$ Because of $K_{\mathbb{X}}+\hat{L}=\varphi^{*} \mathcal{K}=\varphi^{*}\left(K_{X}+L_{X}\right)$ and $K_{\mathbb{X}}=\varphi^{*} K_{X}+D_{a}$ we have

$$
\hat{L}=\varphi^{*} L_{X}-D_{a}
$$

For j fixed we get

$$
\begin{aligned}
\hat{L}^{2} D_{j} & =\left(\varphi^{*} L_{X}-\sum D_{i}\right)^{2} D_{j} \\
& =\left(\varphi^{*} L_{X}\right)^{2} D_{j}+\left(\sum D_{i}\right)^{2} D_{j}-2 \sum\left(\varphi^{*} L_{X}\right) D_{i} D_{j}
\end{aligned}
$$

The $D_{i}^{\prime} s$ being disjoint this simplifies with 3.3 iii) to

$$
\begin{aligned}
\hat{L}^{2} D_{j} & =\left(\varphi^{*} L_{X}\right)^{2} D_{j}+D_{j}^{3}-2 \varphi^{*} L_{X} D_{j}^{2} \\
& =D_{j}^{3}+2\left(L_{X} \cdot C_{j}\right)
\end{aligned}
$$

The following computation now shows the assertion (apply frequently 3.3).

$$
\begin{aligned}
\hat{d}_{0}+\hat{d}_{1}= & 2 \hat{L}^{3}+\hat{L}^{2} K_{X} \\
= & 2\left(\varphi^{*} L_{X}-\sum D_{i}\right)^{3}+\left(\varphi^{*} K_{X}+\sum D_{i}\right)\left(\varphi^{*} L_{X}-\sum D_{i}\right)^{2} \\
= & 2\left(\varphi^{*} L_{X}\right)^{3}-5\left(\varphi^{*} L_{X}\right)^{2}\left(\sum D_{i}\right)+4\left(\varphi^{*} L_{X}\right)\left(\sum D_{i}\right)^{2}-\left(\sum D_{i}\right)^{3} \\
& +\varphi^{*} K_{X}\left(\varphi^{*} L_{X}\right)^{2}-2 \varphi^{*} K_{X} \varphi^{*} L_{X}\left(\sum D_{i}\right)+\varphi^{*} K_{X}\left(\sum D_{i}\right)^{2} \\
= & 2\left(\varphi^{*} L_{X}\right)^{3}+\varphi^{*} K_{X}\left(\varphi^{*} L_{X}\right)^{2}-4 \sum\left(L_{X} C_{i}\right)-\sum\left(K_{X} C_{i}\right)-\sum\left(D_{i}\right)^{3} \\
= & 2 L_{X}^{3}+L_{X}^{2} K_{X}-2 \sum\left(2\left(L_{X} C_{i}\right)+D_{i}^{3}\right)-\sum\left(K_{X} C_{i}\right)+\sum\left(D_{i}\right)^{3} \\
= & d_{0}+d_{1}-2 \sum \hat{L}^{2} D_{i}-\sum\left(-c_{1}\left(\mathcal{N}_{C_{i} / X}\right)-2+2 g\left(C_{i}\right)\right)+\sum\left(D_{i}\right)^{3} \\
= & d_{0}+d_{1}-2 \sum\left(\hat{L}^{2} D_{i}+g\left(C_{i}\right)-1\right) .
\end{aligned}
$$

Corollary 3.5. From 3.4 iv) we see that the congruence $d_{0} \equiv d_{1}(2)$ holds because there is always the congruence $\hat{d}_{0} \equiv \hat{d}_{1}(2)$ [BBS, p. 844].

Lemma 3.6. Let $\varphi: \hat{X} \longrightarrow X$ be the $2^{\text {nd }}$ reduction map and $D_{a}:=\cup D_{i}$ the disjoint union of the ruled surfaces which are contracted to $C_{a}:=\cup C_{i}$. Then there hold the following relations:
i) $6 \mathcal{K} C_{a}=\Sigma\left(\left(\hat{d}_{0}-9\right) \hat{L}^{2} D_{i}+2\left(g\left(C_{i}\right)-1\right)\right)$,
ii) $d_{0}+d_{1}-\hat{d}_{0}-\hat{d}_{1}=6 \mathcal{K} C_{a}-\left(\hat{d}_{0}-11\right) \hat{L}^{2} D_{a}$,
iii) $d_{0}-5 d_{1}-\hat{d}_{0}+5 \hat{d}_{1}=\left(11-\hat{d}_{0}\right) \hat{L}^{2} D_{a}$
iv) $e(X)=e(\hat{X})+6\left(d_{1}-\hat{d}_{1}\right)-\left(\hat{d}_{0}-9\right) \hat{L}^{2} D_{a}$.

Proof. Only i) needs a longer calculation carried out in $[E, 3.2 .11]$, whereas $i i$) follows with $3.4 i v$) out of i), iii) is obvious from $i i$) inserting $d_{1}=\hat{d}_{1}+\mathcal{K} C_{a}$ and finally $i v$) follows from i) using the additivity of the topological Euler characteristic and once again $d_{1}=\hat{d_{1}}+\mathcal{K} C_{a}$:

$$
\begin{aligned}
e(\hat{X}) & =e\left(\hat{X} \backslash D_{a}\right)+e\left(D_{a}\right) \\
& =e\left(X \backslash C_{a}\right)+\sum e\left(D_{i}\right) \\
& =e(X)-\sum\left(2-2 g\left(C_{i}\right)\right)+\sum\left(4-4 g\left(C_{i}\right)\right) \\
& =e(X)+2 \sum\left(1-g\left(C_{i}\right)\right) \\
& =e(X)+\left(\hat{d}_{0}-9\right) \hat{L}^{2} D_{a}-6 \mathcal{K} C_{a} \\
& =e(X)+\left(\hat{d}_{0}-9\right) \hat{L}^{2} D_{a}-6\left(d_{1}-\hat{d}_{1}\right) .
\end{aligned}
$$

Lemma 3.7. On the $2^{\text {nd }}$ reduction (X, \mathcal{K}) there is the estimate

$$
d_{2}^{2} \geq d_{1} d_{3}
$$

Proof. Apply the generalized Hodge index theorem [BBS, 0.15] with $M:=\mathcal{K}$ and $N:=L_{X}$ for $j=2$. Note that for $j=2$ the nef assumption on N is not necessary [$\mathrm{E}, 1.3 .2$].

Lemma 3.8. If on the $2^{\text {nd }}$ reduction the line bundle $K_{X}+2 \mathcal{K}$ is nef we get the inequality

$$
3 d_{1} d_{2}+9 d_{1} d_{3}-9 d_{2}^{2}+d_{0} d_{2}-3 d_{0} d_{3}-d_{1}^{2} \leq 0
$$

Proof. We apply the generalized Hodge index theorem [BBS, 0.15] with $M:=\mathcal{K}$, $N:=K_{X}+2 \mathcal{K}$ and $j=1$.

4. Non-Existence

In some cases short arguments, partly already known from the classification in degrees 9 to 11 exclude the existence of 3 -folds in \mathbb{P}^{5}.
Proposition 4.1. There do not exist 3-folds in \mathbb{P}^{5} of log-general type with invariants as in cases 3,7,11 or 12 in the list 1.1 of possible candidates.
Proof. Each time there holds $\chi\left(\mathcal{O}_{\hat{X}}\right) \leq 0$, thus $p_{g}(\hat{X}) \geq 1$. So we have $\kappa(\hat{X}) \geq 0$. A 3 -fold in \mathbb{P}^{5} of log-general type with non-negative Kodaira-dimension always fulfills the inequality $\hat{d}_{3} \geq 3\left(\chi\left(\mathcal{O}_{\hat{S}}\right)-\chi\left(\mathcal{O}_{\hat{X}}\right)\right)-10$ [BSS 2, Lemma 4.2] which gives a contradiction in our cases.

Proposition 4.2. There does not exist a 3-fold in \mathbb{P}^{5} with invariants as in case 1 in the list 1.1.

Proof. (cf. [BSS 1, Prop. 3.6])
We consider

$$
K_{\hat{X}}|\hat{S} \cdot \hat{L}| \hat{S}=K_{\hat{X}} \hat{L}^{2}=\hat{d}_{1}-\hat{d}_{0}=0
$$

As $\hat{L} \mid \hat{S}=L_{\hat{S}}$ is ample, application of the usual Hodge index theorem shows that either $\left(K_{\hat{X}} \mid \hat{S}\right)^{2}<0$ or $\left(K_{\hat{X}} \mid \hat{S}\right)^{2}=0$ and $K_{\hat{X}} \mid \hat{S} \equiv 0$. Because of

$$
\left(K_{\hat{X}} \mid \hat{S}\right)^{2}=K_{\hat{S}}^{2}+L_{\hat{S}}^{2}-2 K_{\hat{S}} L_{\hat{S}}=\hat{d}_{2}+\hat{d}_{0}-2 \hat{d}_{1}=0
$$

we obtain $K_{\hat{X}} \mid \hat{S} \equiv 0$, whence $K_{\hat{X}} \equiv 0$ because $P I C(\hat{X}) \longrightarrow P I C(\hat{S})$ is injective [$\mathrm{F}, 7.1 .5$]. From $\chi\left(\mathcal{O}_{\hat{X}}\right)=0$ we deduce that $p_{g}(\hat{X})>0$ which implies linear equivalence $K_{\hat{X}} \sim 0$. So $p_{g}(\hat{X})=1$ and $h^{2}\left(\hat{X}, \mathcal{O}_{\hat{X}}\right)=0$. The long exact cohomology sequence of

$$
0 \longrightarrow \mathcal{O}_{\hat{x}}(-1) \longrightarrow \mathcal{O}_{\hat{X}} \longrightarrow \mathcal{O}_{\hat{s}} \longrightarrow 0
$$

contains the part

$$
\underset{\|}{H^{2}\left(\hat{X}, \mathcal{O}_{\hat{x}}\right)} \longrightarrow H^{2}\left(\hat{S}, \mathcal{O}_{\hat{S}}\right) \longrightarrow H^{3}\left(\hat{X}, \mathcal{O}_{\hat{X}}(-1)\right) \longrightarrow H^{3}\left(\hat{X}, \mathcal{O}_{\hat{x}}\right) \longrightarrow 0
$$

This yields a contradiction because we have

$$
\begin{array}{ll}
h^{2}\left(\hat{S}, \mathcal{O}_{\dot{S}}\right) & =h^{0}\left(\hat{S}, K_{\hat{S}}\right)=\chi\left(\mathcal{O}_{\bar{S}}\right)-1=4 \\
h^{3}\left(\hat{X}, \mathcal{O}_{X}(-1)\right) & =h^{0}\left(\hat{X}, \hat{L}+K_{\hat{X}}\right)=h^{0}(\hat{X}, \hat{L})=h^{0}\left(\mathbb{P}^{5}, \mathcal{O}_{\mathbb{P}^{b}}(1)\right)=6, \\
h^{3}\left(\hat{X}, \mathcal{O}_{\hat{X}}\right) & =h^{0}\left(\hat{X}, K_{\hat{X}}\right)=1 .
\end{array}
$$

Proposition 4.3. There does not exist a 3-fold in \mathbb{P}^{5} with invariants as in case 5 in the list 1.1.

Proof. As in this case $\hat{d}_{1}^{2}=\hat{d}_{0} \hat{d}_{2}$ holds, we know from [BBS, 1.1.2 p. 834] that there must be the equality $\hat{d}_{2}^{2}=\hat{d}_{3} \hat{d}_{1}$ as well which, however, is not the case.

Proposition 4.4. There does not exist a 3-fold in \mathbb{P}^{5} with invariants as in case 6 in the list 1.1.

Proof. As all the intersection numbers $K_{\hat{X}}^{3}, K_{\hat{X}}^{2} \hat{L}, K_{\hat{X}} \hat{L}^{2}, \hat{L}^{3}$ can be computed from the \hat{d}_{i}^{\prime} 's we can apply Riemann-Roch to obtain $\chi\left(\hat{X}, 2 K_{\hat{X}}+\hat{L}\right)=-1$. This, however, is a contradiction because from the Kawamata-Viehweg vanishing theorem there follows $\chi\left(\hat{X}, 2 K_{\hat{X}}+\hat{L}\right)=h^{0}\left(\hat{X}, 2 K_{\hat{X}}+\hat{L}\right)$.

Now we deal with case 9 in 1.1 which we are going to exclude applying the already announced analysis of the $2^{\text {nd }}$ reduction. The strategy is to suppose that there is a 3 -fold in \mathbb{P}^{5} of log-general type with the invariants $\hat{d}_{0}=12, \hat{d}_{1}=22, \hat{d}_{2}=17$, $\hat{d}_{3}=9, g(\hat{X})=18, \chi\left(\mathcal{O}_{\hat{X}}\right)=2, \chi\left(\mathcal{O}_{\hat{S}}\right)=10, e(\hat{X})=-78$. Then we distinguish the cases
A) On (X, \mathcal{K}) the line bundle $K_{X}+2 \mathcal{K}$ is not nef. This can only occur in very special cases [BFS, Thm. 2.2]
B) On (X, \mathcal{K}) the line bundle $K_{X}+2 \mathcal{K}$ is nef but not big. Again this is only possible for a few well-known pairs [BFS, Thm. 2.3]
C) On (X, \mathcal{K}) the line bundle $K_{X}+2 \mathcal{K}$ is nef and big.

With the help of the formulae of section 3 we compute the invariants d_{1} and d_{0} on X and get in either case a numerical contradiction. So there cannot exist a $2^{\text {nd }}$ reduction of \hat{X} which is a contradiction to the fact that \hat{X} is of log-general type. Thus this case is excluded.

Lemma 4.5. If there exists a 3-fold $\hat{X} \subset \mathbb{P}^{5}$ of log-general type with invariants as in case 9 in 1.1 then we have the following additional information:
i) $\kappa(\hat{X})=-\infty, \quad h^{2}\left(\hat{X}, \mathcal{O}_{\dot{X}}\right)=1$,
ii) $\kappa(X)=-\infty, \quad h^{2}\left(X, \mathcal{O}_{X}\right)=1, \quad \chi\left(\mathcal{O}_{X}\right)=2, \quad q(X)=0$,

Proof,

i) If $\kappa(\hat{X}) \geq 0$ one gets a contradiction like in 4.1. So $\kappa(\hat{X})=-\infty$ and $p_{g}(\hat{X})=0$. This implies $h^{2}\left(\hat{X}, \mathcal{O}_{\hat{X}}\right)=1$.
ii) Follows from the birationality of φ and the smoothness of X.

Lemma 4.6. (Exclusion of A)) There is no 3-fold in \mathbb{P}^{5} with invariants as in case 9 in 1.1 such that on the $2^{\text {nd }}$ reduction the line bundle $K_{X}+2 \mathcal{K}$ is not nef.

Proof. The possible pairs for (X, \mathcal{K}) in [BFS, Thm. 2.2] can be excluded by easy arguments [$E, 4.2 .9$].

Lemma 4.7. (Exclusion of B)) There is no 3-fold in \mathbb{P}^{5} with invariants as in case 9 in 1.1 such that on the $2^{\text {nd }}$ reduction the line bundle $K_{X}+2 \mathcal{K}$ is nef but not big.
Proof. There are 3 possible pairs for (X, \mathcal{K}) [BFS, Thm. 2.3] two of which are excluded because they necessarily must have $h^{2}\left(X, \mathcal{O}_{X}\right)=0$ contradicting 4.5 ii $)$. The remaining possibility states that (X, \mathcal{K}) is a generic \mathbb{P}^{1}-bundle over a normal surface B with $\mathcal{K}\left|F=\mathcal{O}_{\mathbb{P}^{1}}(1), L_{X}\right| F=\mathcal{O}_{\mathbb{P}^{1}}(3)$ for a general fibre F. As X is smooth (cf. 3.2) theorem 3.2.1 in [BSW] implies that there are only equidimensional fibres. This means that X is a $\mathbb{P}^{\text {- }}$-bundle $[\mathrm{BS}$, Prop 1.4] and thus the base B is smooth, too.
From $d_{1} \geq \hat{d}_{1}$ (cf. 3.4 iii)) and $d_{1} \leq d_{2}^{2} / d_{3}=32.1 .$. (cf. 3.7) and the assumption that $K_{X}+2 \mathcal{K}$ is not big, which leads to

$$
0=(K+2 \mathcal{K})^{3}=\left(3 K_{X}+2 L_{X}\right)^{3}=27 d_{3}-27 d_{2}+9 d_{1}-d_{0}=-d_{0}+9 d_{1}-216
$$

we deduce that only the following pairs $\left(d_{0}, d_{1}\right)$ are possible:

d_{0}	72	63	54	45	36	27	18	9	0	-9	-18
d_{1}	32	31	30	29	28	27	26	25	24	23	22

Because of the additivity of the topological Euler characteristic and $3.6 i$) and 3.4 iii) we obtain, using the notation of paragraph 2 :

$$
\begin{aligned}
e(X) & =e(\hat{X})+2 \sum\left(g\left(C_{i}\right)-1\right) \\
& =e(\hat{X})+6 \mathcal{K} C_{a}-\sum\left(\hat{d}_{0}-9\right) \hat{L}^{2} D_{i} \\
& =e(\hat{X})+6\left(d_{1}-\hat{d}_{1}\right)-3 \hat{L}^{2} D_{a} \\
& =-210+6 d_{1}-3 \hat{L}^{2} D_{a} .
\end{aligned}
$$

On the other hand, as $X \longrightarrow B$ is a \mathbb{P}^{1}-bundle we also have

$$
\begin{aligned}
e(X) & =e\left(\mathbb{P}^{1}\right) e(B) \\
& =2\left(2-2 h^{1,0}(B)+2 h^{2,0}(B)+h^{1,1}(B)\right) \\
& =2\left(2+2+h^{1,1}(B)\right) \\
& \geq 10
\end{aligned}
$$

Now for all of the possible pairs $\left(d_{0}, d_{1}\right)$ the numbers $\hat{L}^{2} D_{a}$ and thus also $e(X)$ can be computed with $3.6 i i i$). For each pair $\left(d_{0}, d_{1}\right)$ we get a contradiction to $e(X) \geq 10$ or to $\hat{L}^{2} D_{a}>0$. So the case that (X, \mathcal{K}) is a \mathbb{P}^{1}-bundle is excluded and the lemma is proved.

Lemma 4.8. Let $\hat{X} \subset \mathbb{P}^{5}$ be a 3-fold with invariants as in case 9 in 1.1. Assume that on the. $2^{\text {nd }}$ reduction the line bundle $K_{X}+2 \mathcal{K}$ is nef and big. Then we have $H^{0}\left(X, K_{X}+\mathcal{K}\right)=0$ and there can only occur the following combinations of d_{0} and d_{1} :

d_{1}	d_{0}
32	$60,62,64,66,68,70$
31	$59,55,57,59,61$
30	$46,48,50,52$
29	$39,41,43$
28	32,34
27	25
26	16

Proof. We get $H^{0}\left(X, K_{X}+2 \mathcal{K}\right)=H^{0}\left(X, 2 K_{X}+L_{X}\right)=H^{0}\left(\hat{X}, 2 K_{\hat{X}}+\hat{L}\right)$ where [BFS, 0.2.7] was applied. As $K_{\hat{X}}+\hat{L}$ is nef and big the Kawamata-Viehweg vanishing theorem and the theorem of Riemann-Roch give $h^{0}\left(\hat{X}, 2 K_{\hat{X}}+\hat{L}\right)=\chi\left(2 K_{\hat{X}}+\hat{L}\right)=0$. As to the values for d_{1} and d_{0} : From 3.7 we have $d_{1} \leq d_{2}^{2} / d_{3}=32.1 .$. , from 3.8 we get $132 d_{1}-d_{1}^{2}-10 d_{0} \leq 2601$ and the big-condition for $K_{X}+2 \mathcal{K}$ reads $-216+9 d_{1}-d_{0}>0$. Combing these 3 inequalities together with the congruence $d_{0} \equiv d_{I}(2)$ (cf. 3.5) gives the stated pairs.

Lemma 4.9. (Exclusion of C)) There exists no 3-fold $\hat{X} \subset \mathbb{P}^{5}$ with invariants as in case 9 in 1.1 such that on the $2^{\text {nd }}$ reduction the line bundle $K_{X}+2 \mathcal{K}$ is nef and big.

Proof. We apply the Riemann-Roch theorem [BOSS 1, 1.3] to K_{X} which yields

$$
\begin{aligned}
\chi\left(K_{X}\right) & =\frac{1}{6} K_{X}^{3}-\frac{1}{4} K_{X}^{3}+\frac{1}{12}\left(K_{X}^{2}+c_{2}(X)\right) K_{X}+\chi\left(\mathcal{O}_{X}\right) \\
& =\frac{1}{12} c_{2}(X) K_{X}+2
\end{aligned}
$$

Since on the other hand we have $\chi\left(K_{X}\right)=-\chi\left(\mathcal{O}_{X}\right)=-2$ we know the intersection number $c_{2}(X) K_{X}=-48$. Now, apply again the Riemann-Roch theorem, this time to $K_{X}+\mathcal{K}$. Inserting $c_{2}(X) K_{X}=-48$ and expressing the intersection numbers in terms of the $d_{i}{ }^{\prime} s$ one obtains

$$
\begin{aligned}
\chi\left(K_{X}+\mathcal{K}\right)= & \chi\left(2 K_{X}+L_{X}\right) \\
= & \frac{1}{12}\left(6 K_{X}^{3}+13 L_{X} K_{X}^{2}+9 L_{X}^{2} K_{X}+2 L_{X}^{3}+2 c_{2}(X) K_{X}+c_{2}(X) L_{X}\right) \\
& +\chi\left(\mathcal{O}_{X}\right) \\
= & \frac{1}{12}\left(6 d_{3}-5 d_{2}+d_{1}+2 c_{2}(X) K_{X}+c_{2}(X) L_{X}\right)+\chi\left(\mathcal{O}_{X}\right) \\
= & \frac{1}{12}\left(-103+d_{1}+c_{2}(X) L_{X}\right)
\end{aligned}
$$

As $h^{0}\left(K_{X}+\mathcal{K}\right)=0$ (cf. 4.8) Kodaira-vanishing gives $0=h^{0}\left(K_{X}+\mathcal{K}\right)=\chi\left(K_{X}+\mathcal{K}\right)$ which leads to $c_{2}(X) L_{X}=103-d_{1}$.

Now, Kawamata-Viehweg vanishing and the Riemann-Roch theorem applied to the line bundle $2 K_{X}+2 \mathcal{K}$ lead to

$$
\begin{aligned}
\chi\left(2 K_{X}+2 \mathcal{K}\right)= & \chi\left(4 K_{X}+2 L_{X}\right) \\
= & \frac{1}{12}\left(84 d_{3}-106 d_{2}+44 d_{1}-6 d_{0}+4 c_{2}(X) K_{X}+2 c_{2}(X) L_{X}\right) \\
& +\chi\left(\mathcal{O}_{X}\right) \\
= & \frac{1}{12}\left(-1008+42 d_{1}-6 d_{0}\right)
\end{aligned}
$$

so that we get the necessary numerical condition

$$
-1008+42 d_{1}-6 d_{0}=12 h^{0}\left(X, 2 K_{X}+2 \mathcal{K}\right) \geq 0
$$

None of the potential pairs $\left(d_{0}, d_{1}\right)$ of 4.8 fulfills this condition. So the lemma is proved.

Whenever on a 3 -fold $\hat{X} \subset \mathbb{P}^{5}$ of log-general type the line bundle $K_{\mathcal{X}}+\hat{L}$ is not ample, the $2^{\text {nd }}$ reduction (X, \mathcal{K}) is not isomorphic to (\hat{X}, \hat{L}) and one can analyze the structure of the $2^{\text {nd }}$ reduction map as done above. In [E, sec. 4.3] this is carried out for the case 10 in 1.1 and we can state the following

Proposition 4.10. A s-fold $\hat{X} \subset \mathbb{P}^{5}$ with invariants $\hat{d}_{0}=12, \hat{d}_{1}=22, \hat{d}_{2}=23$, $\dot{d}_{3}=15, g(\hat{X})=18, \chi\left(\mathcal{O}_{\hat{X}}\right)=1, \chi\left(\mathcal{O}_{\hat{S}}\right)=11, e(\hat{X})=-138$ can only exist if on the $2^{\text {nd }}$ reduction (X, \mathcal{K}) the line bundle $K_{X}+2 \mathcal{K}$ is nef and big. There are exactly the following two possibilities:
a) $K_{X}+2 \mathcal{K}$ is not ample and the $1^{s t}$ reduction $\left(X^{\prime}, L_{X^{\prime}}\right)$ of the pair (X, \mathcal{K}) is via the nef-value morphism $\Phi_{K_{X^{\prime}}+L_{X^{\prime}}}: X^{\prime} \longrightarrow B$ a generic quadric (conic) bundle over a normal surface B. The invariants of (X, \mathcal{K}) are uniquely determined, namely $d_{0}=53, d_{1}=35, e(X)=-132$. The $1^{2 t}$ reduction map contracts exactly one \mathbb{P}^{2} and the polarizing bundle \mathcal{K} can be ample and globally generated, yet not very ample.
b) $K_{X}+\mathcal{K}$ is nef, not big and not ample and (X, \mathcal{K}) is via the nef-value morphism $\Phi_{K_{X}+K}: X \longrightarrow B$ a generic quadric (conic) bundle over a normal surface B. In this case (X, \mathcal{K}) has the invaraints $d_{0}=48, d_{1}=34, e(X)=-138$. The polarizing bundle \mathcal{K} cannot be globally generated.

Proof. See [E, sec. 4.3].

References

[BBS] Beltrametti,M., Biancofiore,A., Sommese,A.J., Projective n-Folds of log-general Type, Transactions of the American Math. Society 314, no 2 (1989), 829-849
[BFS] Beltrametti,M., Fania,L., Sommese,A.J., On the Adjunction Theoretic Classification of Projective Varieties, Math. Ann., 290 (1991), 31-62
[BSS 1] Beltrametti,M., Schneider,M., Sommese,A.J., 3-Folds of degree 9 and 10 in \mathbb{P}^{5}, Math. Ann., 288 (1990), 613-644
[BSS 2] Beltrametti,M., Schneider,M., Sommese,A.J., 3-Folds of degree 11 in \mathbb{P}^{5}, London Math. Society LN Series 179 (1992), 59-80
[BSS 3] Beltrametti,M., Schneider,M., Sommese,A.J., Some Special Properties of the Adjunction Theory for 3-Folds in \mathbb{P}^{5}, Preprint 1993
[BS] Beltrametti,M., Sommese,A.J., On the Adjunction Theoretic Classification of Polarized Varieties, J.f.d. reine u. ang. Math., 427 (1992), 157-192
[BSW] Beltrametti,M., Sommese,A.J., Wiśniewski, J., Results on Varieties with Many Lines and their Application to Adjunction Theory, Lecture Notes In Mathematics, 1507 (1993), 16-38
[BOSS 1] Braun,R., Ottaviani,G., Schneider,M., Schreyer,F.O., Boundedness for non-general type 3-folds in \mathbb{P}^{5}, Complex Analysis and Geometry, Plenum Press (1993), 311-338
[BOSS 2] Braun,R., Ottaviani,G., Schneider,M., Schreyer,F.O., Classification of log-special 3-folds in \mathbb{P}^{5}, Preprint 1992
[Ch] Chang,M.C., Classification of Buchsbaum subvarieties of codimension 2 in projective space, J.f.d. reine u. ang. Math., 401 (1989), 101-112
[E] Edelmann, G., 3-Mannigfaltigkeiten im \mathbb{P}^{5} vom Grad 12, Dissertation 1993
[F] Fujita,T., Classification Theories of Polarized Varieties, London Mathematical Society LNS, 155 (1990)
[I1] Ionescu, P., Embedded projective varieties of small invariants, Proceedings of the Week of Algebraic Geometry, Bucharest 1982, Lecture Notes In Mathematics, 1056 (1984), 142-186
[I2] Ionescu,P., Embedded projective varieties of small invariants, II, Rev. Roumaine Math. Pures Appl., 31 (1986), 539-544
[I3] Ionescu, P., Embedded projective varieties of small invariants, III, Algebraic Geometry, Proceedings, L'Aquila 1988, Lecture Notes In Mathematics, 1417 (1990), 138-154
[M] Miyanishi,M., Algebraic Methods in the Theory of Algebraic Threefolds, Advanced Studies in Pure Math. 1 (1983)
[O1] Okonek, Ch., 3-Mannigfaltigkeiten im \mathbb{P}^{5} und ihre zugehörigen stabilen Garben, manuscripta math., 38 (1982), 175-199
[O2] Okonek, Ch., "Uber 2-codimensionale Untermannigfaltigkeiten vom Grad 7 in \mathbb{P}^{4} und \mathbb{P}^{55}, Math. Z., 187 (1984), 209-219
[O3] Okonek, Ch. On Codimension-2 submanifolds in \mathbb{P}^{4} and \mathbb{P}^{5}, Mathematica Gottingensis, 50 (1986)
[PS] Peskine,C., Szpiro,L., Liaison des variétés algébriques. I, Inventiones math., 26 (1974), 271-302

Gerbard Edelmann, Math. Institut der Univ. Bayreuth, D-95440 BayReUth

[^0]: Proposition 1.1. The only possible sets of invariants of log-general type 3-folds in \mathbb{P}^{5} of degree 12 are:

