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3-FOLDS IN 1 ~5 OF D E G R E E  12 

GERHARD EDELMANN 

Let .~ be a 3-dimensional submanifold of ~ of degree 12. This article gives, up 
to one case, a complete classification of the deformation classes of those 3-folds. 
The main tools used are methods already applied in the classification of degrees 
9 to 11 and adjunction theoretic results. We show here how the 2 "~ reduction 
of .~ can be applied to analyze the birational structure of X or even exclude the 
existence of .~. 

INTRODUCTION 

Submanifolds of ps of codimension 2 are 3-folds of special interest because there 
exist non-complete intersection examples, even examples of Kodaira-dimension - 
oc. This is interesting in view of the Hartshorne-conjecture which says that sub- 
manifolds of p~v with dimension bigger than ~N should be complete intersections. 
Finding examples of 3-folds in ~ with Kodaira-dimension smaller than 3 is also 
attractive because we know that the degree of those 3-folds is bounded [BOSS 1]. 

A 3-dimensional manifold can be embedded in general only into P~, whence 3- 
folds in ps have to fulfil a lot of further restrictive conditions. This allowed a 
complete classification up to degree 8 [O1],[O2],[I1],[I2],[I3], continued by Beltram- 
etti, Schneider and Sommese [BSS 1],[BSS 2] for degrees 9 to 11. This article, which 
is a summary of the author's dissertation, gives a brief outline of the degree-12 case. 

complete classification is given up to one set of invafiants for which neither an 
example can be given nor can the non-existence be shown. 

The main tool for the classification in degree 12 are methods already used by 
[BSS 1] and [BSS 2] in degrees 9 to 11 and a systematic study of the 2 "a reduction. 
Finding relations between the invariants of a 3-fold X C 1 ~ and those of its 2 "a 
reduction (X, K~) plays a very important role. The necessary computations are done 
in detail in [E] and [BSS 3]. In fact, I was informed by Sommese about the existence 
of certain formulae relating the invariants of X and X the proof of which I worked 
out independently. 
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As to finding examples of 3-folds in ~ of degree 12 one can use the well-known 
liaison-techniques. Yet 2 examples have to be constructed in a different way. In 
one example described here in a way originating to Schreyer we use the computer 
algebra program Macaulay to show the smoothness. 
The content of this article is the following 

T h e o r e m  1. Each 3-fold in p6 of degree 12 belongs to one of the following defor- 

mation classes. (Refer to paragraph 1 for a definition of the invariants.) 

c a s e  4 dl d~ d3 g ( 2 ) x ( O x ) x ( % ) e ( 2 ) , ~ ( 2 ) d o  d~ ~ype 
12 16 8 0 15 2 6 48 -0o conic-bundle 
12 16 14 6 15 1 7 -12 -0o  63 31 log-general 
12 18 ~1 21 16 0 9 -102 0 21 21 log-general 
12 20 28 36 17 -1 11 -192 1 I2 20 log-general 
12 22 35 51 18 -2 13 -282 2 12 22 log-general 
12 24 48 96 19 -5 16 -456 3 12 24 cornpl, inters. 
12 36 108 324 25 -19 31 -1296 3 12 36 compl, inters. 

53 35 
12 22 23 15 18 1 11 -138 -0o ? 

48 34 
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For the cases 1 to 7 we know examples, whereas we cannot decide whether a 3-fold 
in IP z with the invariants of case 8 exists. 

Uniqueness is known in case 1 [BOSS 2] and for the complete intersections of the 
cases 6 and 7 respectively. In case 2 we can show that  the 2 '~ reduction has to be 
a PLbundle  over p2. In case 3 the 2 "a reduction is also uniquely determined. Note 
that  for the cases 4 to 7 the 2 '~ reduction is isomorphic to .~ and that  in case 1 

there does not exist a 2 "d reduction. 

The resolutions 
following ones: 

c a s e  

1 

2 
3 

4 
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6 

7 

of the ideal-sheafs J~/p of the 3-folds in ps of degree 12 are the 

resolution of J .~ /p  

0 - - ~  4 v ~ . ( - 5 )  �9 a$. , a g . ( - ~ )  - - ~  J~l~ , 0  
0 --- .  r a g , ( - 3 )  ~ 3 . ~ . ( - 4 )  e 6 0 , . ( - 5 )  - -~  j~ /~ .  , 0  
0 ~ 3 o r . ( - 5 )  $ o r , ( - 6 )  - - .  a l . ( - 3 )  - - ~  J x / r .  - - ~  0 
0 - - ~  2 o r . ( - 6 )  , 3 o r . ( - 4 )  - - ~  Jx / r .  , 0  
0 ~ 3 0 r . ( - 6 )  , s o t . ( - 5 )  ~ 0 ~ . ( - 3 )  - - - ,  J e / r .  - - ~  0 
0 , o r . C - 7 )  - - .  v ~ . ( - 4 )  r 0 , . ( - 3 )  - - ~  j ~ / ~ .  - - ~  0 
0 , o F . ( - 8 )  - - - .  o r . ( - 6 )  �9 0 ~ . ( - 2 )  ~ J ~ / .  - -~  o 

I would like to thank the Deutsche Forschungsgemeinschaft (DFG) for financial 
support. I am also grateful to professor Michael Schneider for inspiring this work 

and giving me lots of useful hints, furthermore to professor Frank-Olaf Schreyer and 

professor Andrew-John Sommese for their valuable support. 
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1. NOTATIONS AND PRELIMINARIES 

We work over the complex field C. All varieties are projective. By "3 - fold" 
we always mean a 3-dimensional complex compact manifold, "surface" denotes a 
2-dimensional compact complex variety, "curve" a 1-dimensional compact complex 
variety. 

The greater part of our notations is standard in algebraic geometry. (cf. e.g. 
[BSS 1], [BSS 2]) Notations with hat are principally reserved for a 3-fold .~ 
embedded into ~ by L := O~(1)[X'. By S we always mean a generic hyperplane 
section of X, which is a smooth surface in ~ ,  and 0 denotes a generic hyperplane 
section of S. So C is a smooth curve in ~ .  Furthermore we denote by g(.X) the 
sectional genus of X, by X(O:~), respectively X(O~) the Euler characteristic of X, 
respectively of S and by e(X) the topological Euler characteristic. The Kodaira- 
dimension is as usual denoted by ~. 

For a polarized pair (V, Lv), where V is an n-dimensional manifold and Lv an 
ample line bundle on V there exists a 1 ~ reduction (V' ,Lv,) ,  if Kv + (n - 1)Lv 
is ne fand  big. Note that for a 3-fold X C ~ of degree d # 7 one always has 
(J(, L) ~_ (X',  Lx,) as polarized pairs whenever a 1 ~ reduction (X',  Lx,) exists and 
that for d > 12 the line bundle K;t + Z is always nef and big with one single 
well-known exception mentionned in 2.6. If K t + L is nef and big, ) (  is said to 
be of log - general type. For )~ of log-general type the 1 "t reduction is always 
isomorphic to )f  and there always exists a 2 '~ reduction (X, ]C) together with a 
birational morphism ~ : Jf ~ X, the so-called 2 '~ reduction map. Note that 
]C is arL ample line bundle on X with ~o*~ = Kg + Z and tC = Kx  + Lx with 
Lx := ~.(L) vv. The 2 ~ reduction map will be examined more closely lateron. 
Further information about the 1 ~ and the 2 '~ reduction can also be obtained from 
[BFS]. 

On .~ respectively on X we define the pluridegrees by 

: =  (Kx + L)~L s-' i = o , . . . , 3 ,  
d~ := (Kx  + Lx)iL3x-' i = 0 , . . . , 3  

respectively. 

A 3-fold of log-general type satisfies a lot of numerical restrictions so that for 
a fixed degree d one gets a finite number of sets of possible invariants. Putting 
together all those restrictions which are already known from [BSS 1], [BSS 2] and 
[BBS] a simple C-programme yields the foUowing list of possible sets of invariants 
of log-general type 3-folds in ps of degree 12. For further details see [E, chap. 1]. 

Proposition 1.1. The only possible sets of invariants of log-general type 8-.folds in 
of degree 1P are: 
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case do ~ d~ 
1 1$ 15 15 
$ 1$ 16 14 
S I$ 16 $0 
4 I5 18 $I 
5 1$ 18 $7 
6 15 $0 $$ 
7 
8 
9 
10 
11 
1$ 
13 
14 
15 

1$ $0 $8 
15 $0 28 
15 $$ 17 
1$ $$ $3 
I$ $$ $9 
IP $$ 35 
15 $$ 85 

15 $4 48 
1$ 36 108 3$ 4 

d, g(s xCV~) x(%) eCYO 
15 18 o 5 $4 
6 15 1 7 -15 
15 15 0 8 -75 
$1 16 0 9 -105 
$7 16 -I I0 -165 
6 17 1 10 -108 

15 17 0 11 -168 
36 17 -1 11 -195 
9 18 $ 10 -78 
15 18 1 11 -138 
$I 18 0 I$ -198 
$7 18 -I 13 -$58 
51 18 -$ 13 -$85 
96 19 -5 16 -456 

25 -19 31 -1596 

Note that this procedure can be applied in any degree. 
however, is rapidly increasing with growing degree. 

The length of the list, 

2. EXAMPLES OF 3-FOLDS IN ps OF DEGREE 12 

There are 2 complete intersection 3-folds in ps of degree 12: 

Example  2.1. The complete intersection of type (2, 6) with the invariants do = 12, 
dl = 36, d2 = 108, d.~ = 324, g(X) = 25, x(O~t) = -19, x(O$) = 31, e(x)  = 
-1296 is the uniquely determined example with mazimal sectional genus. 

Exa mpl e  2.2. The complete intersection of type (3, 4) /s the uniquely determined 
ezample with submazimal sectional genus. The invariants are do = 12, dl = 24, 
d, = 48, ds = 98, gCYO = 19, x ( o ~ )  = - 5 ,  x ( % )  = 16, eCJO = - 4 5 e  

Two further examples can be obtained by liaison-techniques [PS, Prop. 4.1] [O3, 3. 
Theorem 6] from 3-folds in P~ with degrees smaller than 12 as explained in [E, chap. 
2]. By this method one also gets an explicit resolution of the idea/sheaf. Thus for 
examples obtained by liaison generally all invariants are known. We have 

Exa mpl e  2.3. Linkage V ~ ) f  where V denotes the Segre-embedded 3-fold in 

of degree 3 with resolution 

0 - - ,  2 o r . ( - 3 )  , 3 0 r . ( - 2 )  - - - ,  ,:r,, , 0  

gives a 3-fold ) f  C p5 with resolution 

0 ~ 3 0 ~ . ( - 0 )  , 3 0 r . ( - 5 )  ~ 0 ~ . ( - 3 )  , :r~ ~ o. 

r h .  e . .mple  has i .va~iant,  do = 12, d, = 22, d. = 35, ds = 51, g ( ~ )  = ls, 
X(O~t) = -2 ,  X(O$) = 13, e(X) = -282. Looking at the resolution of K t one can 

show that to(X) = 2. 
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E x a m p l e  2.4. Let V denote the 3-fold in ps of degree 8 with resolution 

0 - - ,  2 o r . ( - s )  , o . ( - 4 )  ~ 2 0 . ( - 3 )  - - .  y ~  - - .  0. 

Now linkage V ~ 2 yields a 3-fold 2 C ~ with resolution 

0 - - ~  2 0 ~ ( - 6 )  ~ 3 0 r * ( - 4 )  ' J 2  - - ~  0 

a~d the invariants do = n ,  d, = 20, d2 = 2s, d~ = 36, g ( 2 )  = lr ,  x ( O ~ )  = - 1 ,  
X(Ot) = 11, e(X) = -192.  The Kodaira-dimension can be shown to be 1. 

E x a m p l e  2.5. Chang [Oh, p. 107] has already shown that there exists a Buchsbaum 
3-fold in ~ of degree 15 with resolution 

o - - .  3 0 . ( - 5 )  ~ 0 . ( - 6 )  , ~ ( - 3 )  - - ~  y ~  , o 

and invariants do = 12, dl = is ,  d, = 21, ds = 21, g ( 2 )  = lo, x ( o ~ )  = o, 
x ( o ~ )  = 11, e ( k ) =  - l o 2  

E x a m p l e  2.6. In [BOSS 2] a further 3-fold in ps of degree 15 is described. Its 
resolution is 

0 - - ,  4 0 , , ( - 5 )  �9 a ~  - - - ,  f l~ , ( -2 )  , Y~ ---* 0 

and it has the invariants do = 12, dl = 16, d~. = 8, d3 = o, 9 ( 2 )  = 15, x(iDlt ) = 2, 
x(o#)  = 6, e(X) = 48. It is the uniquely determined 3-fold in ps with these 
invariants. We also know that it is a conic-bundle over a K3-surface and it is the 
only 3-fold in ~ of degree 15 that is not of log-general type. 

Now we are going to show that  there is a further 3-fold in/ps of degree 12. This 
3-fold was constructed with the help of Schreyer and Popescu using Macaulay to 
show the smoothness. 

P r o p o s i t i o n  2.7. There exists a log-general type 3-fold 2 C ps with ~(2)  = -oo  
and invariants do = 12, dl = 16, d~ = 14, d3 = 6, 9 ( 2 )  = 15, x(O:t ) = 1, 
g(o~)  = 7, e(X) = - 1 2  which is the blowing-up of the Bordiga S-fold along a 
smooth curve of degree I5 and genus 10. Nor evew 3-fold in ~ with these invariants 
the 2 ~ reduction has to be a Pl-bundle over p2 

Proof. We construct 2 C ps as determinantal  locus of a vector bundle homo- 
morphism ~b : ~- --+ Q, i.e. 

2 = {p ~ ~: rk~Cp) < rk(O)). 

We will see below how ~- and ~ can be chosen. This construction is carried out 
explicitely with Macaulay the complete Macaulay programme and results being 
described in [E, sec. 2.3 and appendix B]. Note that  Macaulay-computations can 
only be done over a ring with positive characteristic p with 0 < p < 31991. For 
general reasons it is enough to do the computations for p maximal  in order to 
obtain the same results (esp. concerning the smoothness) for the case that  the 
field is C. Let S := Z[z0 , . . . ,  zs] and choose a generic S-module-homomorphism 
9S(1) m__m_.... 2S(2) which may be considered to be given by a matr ix  
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ko 0 0 :~o a:z z~ zs x4 z~J" 

We are going to construct m as a representation of the finite cohomology module 
M := $.ezHl(ff~t(n)) .  A free resolution of M is the exact sequence 

0--* 3 S ( - 5 ) ~  16S(-4)  ~ 33S(-3)--* 5S( -1 )  ~ 12S I'.2, 9S(1) --~ 2S(2) ~ M-~  0 
$ @ 

3os(-2) los(-1) 

Choose a linear morphism 6S ~ 9S(1) by multiplying the 9 x 12 submatrix of 
fro.2 with a random 12 x 6 matrix with entries in Z. In the free resolution of the 
transposed morphism 9S( -1 )  to, 6S we look at the restriction S ( - 5 )  b 9S(-1) .  
Now the transposed morphism 9S(1) tb~ S(5) together with i := tb o fro.2 gives 
rise to the exact sequence 

0 ---,  6S(-5)  im  f m . 2  i ~ S 

II 
ker m 

, coker i , ~ 0. 

The sheMified version 
0 ---.  6 v r . ( - 5 )  ~ .  ke~ m , j ~ / .  , o ( .)  

II II 

is a resolution of a 2-codimensional subvaziety of P~ of degree 12 and genus 15. From 
a free minimal resolution of (*) we can compute all the invariants of X. So there 
only remains to be shown the smoothness of X. This is carried out by Macaulay. 

One can see that the first 6 entries of the matrix i (i is a 1 x 12 matrix) describe 
a scroll. In order to show the smoothness of X we look at the Jacobi-matrix of i 
and take some 2 x 2-minors in the block of the sextics and the quintics. The ideal 
of these 2 x 2-minors together with the equations of the scroll contains sing(fir). It 
is enough to choose randomly 3 minors in the quintics and in the sextics to show 
that s ing( ) f )  = 0. 

So we have constructed a 3-fold in ps with the desired invaziants. The birational 
structure given by the 2 '~ reduction map can also be examined with Macaulay 
wherefrom the claimed structure is deduced [E, see. 2.3]. Note that the 2 '~ reduc- 
tion (X,/C) is the well-known Bordiga 3-fold embedded by Ix:l into P~. This implies 
especially that ~;(X) = -oo .  [] 

R e m a r k  2.8. The 3-fold described in 2.7 can also be constructed in a slightly dif- 
ferent way if  one starts with the cohomology table. This has the advantage that one 

gets a better manageable resolution of ff~t , namely 

0 ,2n~.( -3)  , 3 ~ . ( - 4 ) � 9  eo~.(-5)  , j~/~. ~ o. 

Again, for  the smoothness of ) (  we need a Macaulay computation. 
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3. THE 2 nd REDUCTION (X, K:) 

Analyzing the 2 "~ reduction map qo : X ~ X for a 3-fold X C ps of log- 
general type can in certain cases show the non-existence of 3f or, at least, one 
obtains some birational information about X. The structure of ~ for general 3- 
folds (without the embedding condition into II ~) has been known explicitely [BFS, 
0.2.1] where a list of all possible contractions of divisors to points or curves is 
given. Divisorial contractions, however, may cause singularities in X which make it 
difficult to define and compute invariants of X. Fortunately, making systematically 
use of the embedding-condition of -~ into [~, most of those divisorial contractions 
can be excluded. The computations which are rather complicated can be found in 
[E, chap. 3] and also in [BSS 3]. The result is the following 

T h e o r e m  3.1. Let X be a &fold in ~ of log-general type and ~ : X ----* X the 2 ~ 
reduction map. I f  d ~ 10,13 the map ~ can only blow down disjoint ruled surfaces 
Di C ]( to smooth curves Ci C X where Ci is isomorphic to the base curve of Di. 
In case d = 13 there may occur in addition contractions of disjoint divisors D ~- •2 
with normal bundle Afo/.r = O1,(-2)  to points. 

Corol la ry  3.2. I f  in 3.1 d :~ 10, I3 the 2 "~ reduction is smooth. 

Next we prove some formulae relating the invariants d~ of )f  with the invariants dl 
of X. For the rest of this article we always restrict our considerations to the case 

d #  10,13. 

L e m m a  3.3. Let ~v : f (  ~ X be the 2 ~ reduction map and D C f (  a ruled surface 
blown down by ~ to a curve C C X .  Furthermore let l denote a fibre of the ruled 

surface D and s s line bundles in P I C ( X ) .  Then we have: 
i) (~*s  and Dr=-1, 
ii) (~ 's163 D = 0, especially (~*s = O, 
iii) (~0"s = - s  C, 
iv) D " = - c ~ ( J r  
v) K x C  = -c~(~r - 2 + 2g(C) 
vi) (~ 'C)D = ( c c ) t  i .  H'C2,Z).  

Proof. These are well-known expressions. See e.g. [M, p. 75]. [] 

Proposition 3.4. Let ~o : f~ ~ X be the 2 '~ reduction map contracting the dis- 

joint ruled surfaces Do := UDi to curves Ca := UCi. Then we have 

i) a s = d . ,  
ii) d~ = d~, 
iii) dl = d l  + ~.G,, especially dl > dr, 

iv) d~ + dl = do + dl - 2 E,(L~D, + g (r  - 1). 

Proof. 

i) ds = (K~ + L) s = (~*E)'  = ~" = (Kx + L x ?  = d,. 
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ii) From [BFS, p. 381 we know a formula for K~ which under our additional 
assumptions simplifies to 

K 2 =~o*Kx + D . .  

Now with 3.3 we have 

d2 = IC=Lx = (~o*lC)=~o*Lx 

= (~*K:)2(~o'/C - ~ ' K x )  

= (~'K:)2~'K: - (~o'K:)'(K~ - D.)  

= (K~ + L)2L + (K~r + L)2Kyc - (V*K:)2K)t 

= d2. 

iii) Is proved in a similar way as ii). 

iv) Because of K~ + L = V'K: = ~ ' ( K x  + L x )  and K~ = ~o'Kx + D,, we have 

L = ~*Lx  - D,.  

For j fixed we get 

L2Dj = (~*Lx - ~,DI)2D~ 
= (~o*Lx)2Dj + ( E D i ) ' D j  - 2 E ( ~ * L x ) D i D j .  

The D~s being disjoint this simplifies with 3.3 iii) to 

L2Dj = (~o*Lx)2Dj + 0 7 - 2~*LxD~ 
= D~ + 2(Lx .Cj ) .  

The following computat ion now shows the assertion (apply frequently 3.3). 

do+d, = 2Ls + L'Kx 
= 2(~o*Lx - E Di) 3 + (~o*Kx + E DI)(~o*Lx - E Di) = 
= 2(~o*Lx) z - 5(~o*Lx)=(g D,) + 4 ( ~ * L x ) ( g  D , ) '  - (~2 D~) s 

+~o'Kx (~,*Lx) ~ - 2 ~ o ' K x ~ ' L x ( E D i )  + ~ ' K x ( ~ . D , )  2 
= 2(~,*Lx) s + ~o*Kx(v*Lx) 2 - 4Y ; (LxCi )  - E ( K x C i )  - E ( D , )  s 

= 2L3x + L~xKx - 2 E ( 2 ( L x C , )  + D~) - E ( K x C , )  + E ( D , )  s 

= do + d, - 2 E L ~D, - E ( - c l ( X c , / x )  - 2 + 2g(Cd) + E ( D , )  3 
= do + d, - 2 E ( L ' D ,  + g ( C d  - t) .  [] 

C o r o l l a r y  3.5.  From 3.4 iv) we see that the congruence do =- d, (2) holds because 

there is always the congruence do =- d, (2) [BBS, p. 844]. [] 

L e m m a  3.6. Let ~o : ) (  ) X be the 2 '~ reduction map and D.  := UDi the disjoint 

union of  the ruled surfaces which are contracted to C.  := UCi. Then there hold the 

following relations: 

/) 6K:C. = E((do - 9)]flDi + 2(g(Ci) - 1)), 
iO do + d, - do - d, = s r . c o  - (do - n ) L ' D . ,  

iiO do - 5d,  - do + 5d,  = (11 - d o ) P D . ,  

iv) e ( X )  = e(X)  + 6(d, - d,) - (do - 9)L'D,, .  
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Proof. Only i) needs a longer calculation carried out in [E, 3.2.11], whereas ii) 
follows with 3.4iv) out of i), iii) is obvious from ii) inserting dl = dl + ]CC, and 
finally iv) follows from i) using the additivity of the topological Euler characteristic 
and once again dl = dl + K:C.: 

e(X)  = e (X \D, , )  + e(D,)  
= e(X\Co) + E e(Dd 
= e(X) - E(2  - 2g(C~)) + E(4  - 4g(Cd) 
= e ( x )  + 2 E ( 1  - g(cd) 
= e ( X )  -I- (do - 9)L2D,, - 6K:C. 

^ 

= e (X)  + (do - 9) /~D,  - 6(dl - dl). [] 

L e m m a  3.7. On the 2 '~a reduction (X,  lC) there is the estimate 

d~ > dlds. 

Proof. Apply the generalized Hodge index theorem [BBS, 0.15] with M :=/C and 
N := L x  for j = 2. Note that for j = 2 the nef assumption on N is not necessary 
[E, 1.3.2]. [ ]  

L e m m a  3.8. I f  on the 2 '~a reduction the line bundle K x  + 21C is nef  we get the 
inequality 

3dld~ + 9d~da - 9d~ + dod2 - 3doda - d~ < O. 

Proof. We apply the generalized Hodge index theorem [BBS, 0.15] with M := K:, 
N : = K x + 2 / ( ; a n d j =  1. [] 

4. NON-EXISTENCE 

In some cases short arguments, partly already known from the classification in 
degrees 9 to 11 exclude the existence of 3-folds in II ~5. 

P r o p o s i t i o n  4.1. There do not exist 3-folds in ~s of log-general type with invari- 

ants as in cases 3,7,11 or 12 in the list 1.1 of possible candidates. 

Proof. Each time there holds X(O~t) _< 0, thus p0()() > 1. So we have tr _> 0. A 
3-fold in ~ of log-general type with non-negative Kodaira-dimension always fulfills 
the inequality d3 _> 3(x(O~) - x(O?,))  - 10 [BSS 2, Lemma 4.2] which gives a 
contradiction in our cases. [] 

P r o p o s i t i o n  4.2. There does not exist a 3-fold in IP 5 with invariants as in case 1 
in the list 1.1. 

Proof. (cf. [BSS 1, Prop. 3.6] ) 
We consider 

Kjt [S.LIS = Z x L  2 = dl - do = 0. 

As L[S = L~ is ample, application of the usual Hodge index theorem shows that  
either (K~t[~)2 < 0 or (K)t[S) 2 = 0 and K:t[S - 0. Because of 

( K ~ [ ~ )  ~ = ~ + L~ - 2K~L~ = d~ + do - 2d~ = 0 
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we obtain Kg]S - 0, whence Kg - 0 because PIC(X) --- .  P I C ( S )  is injective 
[F, 7.1.5]. From X(Og) = 0 we deduce that pg(.~) > 0 which implies linear equiv- 
alence K,e ~ 0. So pg(2) = 1 and h2(2,  O e ) = O. The long exact cohomology 
sequence of 

0 --~ ( . g x ( - I )  - - ~  C9~ ~ (D~ - ~ *  0 

contains the part 

H2(): ,  O~) --~ H2(S, OS) ---~ H3(X, OX(-1))  - -~ H3(2 ,  OX) --~ 0. 

f[ 
0 

This yields a contradiction because we have 

ha(k ,  O~ ( - 1 ) )  = h~ L + K,e) = h~ L) = h~  Op(1)) = 6, 
h 3 ( 2 , 0 x )  = h ~  1. [] 

P r o p o s i t i o n  4.3. There does not ezist a 3-fold in ~s with invariants as in case 5 

in the list 1.1. 

Proof. As in this case d~ = d0d2 holds, we know from [BBS, 1.1.2 p. 834] that there 
must be the equality d~ = dsdl as well which, however, is not the case. [] 

P r o p o s i t i o n  4.4. There does not exist a 3-fold in ~s with invarian~s as in case 6 

in the list 1.1. 

Proof. As all the intersection numbers t(s~, I ~ L ,  K ~ L  2, L s can be computed from 

the a~i's we can apply Riemann-Roch to obtain x(X, 2Kr +L) = -1 .  This, however, 
is a contradiction because from the Kawamata-Viehweg vanishing theorem there 
follows X()(, 2Kt  + L) = h~ 2/<s + L). [] 

Now we deal with case 9 in 1.1 which we are going to exclude applying the already 
announced analysis of the 2 "a reduction. The strategy is to suppose that there is 
a 3-fold in II ~ of log-general type with the invariants do = 12, dl = 22, d2 = 17, 
d3 = 9, g ( x )  = 18, x ( O t )  = 2, x (o$ )  = 10, e(X) = -78 .  Then we distinguish the 
cases 

A) On (X, K;) the line bundle K x  + 2](: is not nef. This can only occur in very 
special cases [BFS, Thm. 2.2] 

B) On (X,K;) the hne bundle K x  + 2/E is nef but not big. Again this is only 
possible for a few well-known pairs [BFS, Thin. 2.3] 

C) On (X,/E) the line bundle K x  + 2/r is nef and big. 

With the help of the formulae of section 3 we compute the invariants dl and do 
on X and get in either case a numerical contradiction. So there cannot exist a 2 "a 
reduction of X" which is a contradiction to the fact that )~ is of log-general type. 
Thus this case is excluded. 
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L e m m a  4.5. I f  there ezists a 3-fold ) (  C ~s of log-general type with invariants as 
in case 9 in 1.1 then we have the following additional information: 

i) ~ ( 2 )  = - c o ,  M ( 2 , O s c ) =  1, 
zi) ~ . ( X ) = - o o ,  hZ(X, Ox)= 1, X(Ox)= 2, q(X)=0, 

Proof. 

i) If s ( 2 )  >_ 0 one gets a contradiction like in 4.1. So ~ ( 2 )  = - c o  and pg(X) = 0. 
This implies h2(2 ,  OX) = 1. 

ii) Follows from the birationality of ~o and the smoothness of X. [] 

L e m m a  4.6.  (EzcIusion of A) ) There is no 3-fold in ps with invariants as in case 
9 in 1.1 such that on the 2 ~'t reduction the line bundle K x  + 2E is not nef. 

Proof. The possible pairs for (X,K:) in [BFS, Thm. 2.2] can be excluded by easy 
arguments [E, 4.2.9]. [] 

L e m m a  4.7. (Ezclusion orB)  ) There is no 3-fold in •s with invariants as in case 
g in 1.1 such that on the 2 ~a reduction the line bundle K x  + 2E is nef but not big. 

Proof. There are 3 possible pairs for (X,/C) [BFS, Thin. 2.3] two of which are 
excluded because they necessarily must have h~(X, O x )  = 0 contradicting 4.5 ii). 
The remaining possibility states that  (X, K;) is a generic lPt-bundle over a normal 
surface B with E l F  = Oe,(1), L x l F  = O~(3)  for a general fibre F.  As X is smooth 
(cf. 3.2 ) theorem 3.2.1 in [BSW] implies that  there are only equidimensional fibres. 
This means that  X is a PX-bundle [BS, Prop 1.4] and thus the base B is smooth, 
too. 
From dl >_ d, (cf. 3.4 i i i ) )  and dl < d]/d3 = 32.1.. (cf. 3.7 ) and the assumption 
that K x  + 2](. is not big, which leads to 

0 = (K + 2/(:) 3 = (3Kx  + 2Lx)  3 = 27d3 - 27d2 + 9dl - do = - d o  + 9dl - 216, 

we deduce that  only the following pairs (do, dl) are possible: 

dt 32 31 30 29 28 27 26 23 22 

Because of the additivity of the topological Euler characteristic and 3.6 i) and 3.4 
iii) we obtain, using the notation of paragraph 2: 

e(X)  = e(2)  + 2E(g(C, )  - 1) 
= e(X)  + 61CC, - }2(do - 9)L*D, 
= e(X) + 6(d, - d , )  - 3L2D. 
= -210  + 6dl - 3L2D.. 

On the other hand, as X * B is a ]Pl-bundle we also have 

e (X)  = e(~ b e(B) 
= 2(2 - 2M'~ + 2h"~ + h ' " (B ) )  

= 2(2 + 2 + h ' , l (B) )  
> 10. 
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Now for all of the possible pairs (do, d~) the numbers L2D, and thus also e(X) can 
be computed with 3.6iii). For each pair (do, dl) we get a contradiction to e(X) > 10 
or to L2D, > 0. So the case that (X,/C) is a PX-bundle is excluded and the lemma 
is proved. [] 

L e m m a  4.8. Let )( C ps be a 3-fold with invariants as in case 9 in 1.1. Assume 
that on the. 2 '~ reduction the line bundle Kx  + 2E is nef and big. Then we have 
H~ Kx  + ~.) = 0 and there can only occur the following combinations of do and 
dl : 

dl do 
32 60, 62, 64, 66, 68, 70 
31 53, 55, 57, 59, 6I 
30 
29 

46, 48, 50, 52 
s9, 4I,  4 s  

Proof. We get H~ K x  + 2/~) = H~ 2Kx + Lx)  = H~ + L) where 
[BFS, 0.2.7] was apphed. As Kr +L is nef and big the Kawaanata-Viehweg vanishing 
theorem and the theorem of Riemann-Roch give h~ 2K:t + L) = X(2K~ + L) = O. 
As to the values for dl and do: From 3.7 we have dl < ~/d3 = 32.1., from 
3.8 we get 132dl - ~ - 10do < 2601 and the big-condition for Kx + 2K: reads 
-216 + 9dr - do > 0. Combing these 3 inequalities together with the congruence 
do - dl (2) (of. 3.5) gives the stated pairs. [] 

L e m m a  4.9. (Exclusion of C) ) There exists no 3-fold f f  C ~ with invariants as 
in case 9 in 1.1 such that on the 2 '~ reduction the line bundle Kx  + 21C is nef and 
big. 

Proof. We apply the Riemann-Roch theorem [BOSS 1, 1.3] to Kx which yields 

x ( K x )  = ~ 3 , 3 i K }  + ~K} - ~ ( K ~  + c2(X))Kx + X(Ox) 
= ~c2(X)Kx  + 2. 

Since on the other hand we have x ( K x )  = - X ( O x )  = - 2  we know the intersection 
number c2(X)Kx = -48. Now, apply again the Riemann-Roch theorem, this time 
to Kx + IE. Inserting c2(X)Kx = -48  and expressing the intersection numbers in 

terms of the di's one obtains 

x(Kx + E) = x(2Kx + Lx) 

=  (6K} + 13LxK} + 9L}Kx + + 2c (X)Kx + c,(X)Lx) 
+ x(ox) 

= ~(6do - 5d, + dl + 2c2(X)Kx + c2(X)Lx) + X(Ox) 

=  (-103 + dl + c,(X)Lx). 

As h~ +K:) = 0 (cf. 4.8 ) Kodaira-vanishing gives 0 = h~ +IC) = x ( K x  +K.) 
which leads to c2(X)Lx = 103 - dl. 

28 32, 34 
27 25 
26 16 
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Now, Kawamata-Viehweg vanishing and the Pdemann-Roch theorem applied to the 
line bundle 2Kx + 2](: lead to 

x(2Kx + 2](:) = x(4Kx + 2Lx) 
=  (84d - 106d  + 44d  -6do + 4c (X)Kx + 2c (X)L ) 

+ x(Ox) 
=  (-1008 + 42 , - 6d0) 

so that we get the necessary numerical condition 

-1008 + 42dl - 6d0 = 12h~ 2Kx + 2/C) _> 0. 

None of the potential pairs (do, dl) of 4.8 fulfills this condition. So the lemma is 
proved. [] 

Whenever on a 3-fold 3( C ~ of log-general type the line bundle K 2 + L is not 
ample, the 2 "d reduction (X, }C) is not isomorphic to (X,/~) and one can analyze 

the structure of the 2 "a reduction map as done above. In [E, see. 4.3] this is carried 
out for the case 10 in 1.1 and we can state the following 

P r o p o s i t i o n  4.10.  A 3-fold X C ~ with invariants do = 12, dl = 22, d2 = 23, 

d3 = 15, g(X)  = 18, x ( 0 2 )  = 1, x(O~) = 11, e()() = -138  can only ezist if on 
the 2 r~ reduction (X, ]C) the line bundle Kx + 21C is nef and big. There are ezactly 
the following two possibilities: 

a) Kx  + 21C is not ample and the 1"* reduction (X', Lx,) of the pair (X, ]C) is via 
the her-value morphism ~Kx,+Zx, : X '  ----+ B a generic quadric (conic} bundle 
over a normal surface B. The invariants of (X, ]C) are uniquely determined, 
namely do = 53, dl = 35, e(X) = -132.  The 1 "t reduction map contracts 
ezactly one 72 and the polarizing bundle 1C can be ample and globally generated, 
yet not very ample. 

b) Kx +1C is nef, not big and not ample and (X,K~) /s via the her-value morphism 
~nx+n : X ~ B a generic quadric (conic} bundle over a normal surface B. 
In this case (X,]C) has the invaraints do = 48, dl = 34, e(X) = -138.  The 
polarizing bundle 1C cannot be globally generated. 

Proof. See [E, sec. 4.3]. [] 
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